Exercise 85

Find a parabola $y=a x^{2}+b x+c$ that passes through the point $(1,4)$ and whose tangent lines at $x=-1$ and $x=5$ have slopes 6 and -2 , respectively.

Solution

The fact that the parabola passes through $(1,4)$ means that

$$
\begin{equation*}
4=a(1)^{2}+b(1)+c=a+b+c . \tag{1}
\end{equation*}
$$

Take the derivative of the equation for the parabola.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(a x^{2}+b x+c\right) \\
& =2 a x+b
\end{aligned}
$$

Since the tangent lines at $x=-1$ and $x=5$ have slopes 6 and -2 , respectively,

$$
\begin{aligned}
& \left\{\begin{aligned}
6 & =2 a(-1)+b \\
-2 & =2 a(5)+b
\end{aligned}\right. \\
& \left\{\begin{aligned}
6 & =-2 a+b \\
-2 & =10 a+b
\end{aligned}\right.
\end{aligned}
$$

Subtract the respective sides of these equations to eliminate b.

$$
\begin{gathered}
6-(-2)=-2 a-10 a \\
8=-12 a \\
a=-\frac{2}{3}
\end{gathered}
$$

Substitute this result for a into either of the two equations to determine b.

$$
\begin{gathered}
6=-2\left(-\frac{2}{3}\right)+b \\
6=\frac{4}{3}+b \\
b=\frac{14}{3}
\end{gathered}
$$

Plug these values for a and b into equation (1) to determine c.

$$
4=\left(-\frac{2}{3}\right)+\left(\frac{14}{3}\right)+c \quad \rightarrow \quad c=0
$$

Therefore, the equation of the parabola is

$$
y=-\frac{2}{3} x^{2}+\frac{14}{3} x
$$

